PlantMWpIDB: a database for the molecular weight and isoelectric points of the plant proteomes
Mohanta, TK, Khan, AL, Hashem, A., Abd Allah, EF & Al-Harrasi, A. The molecular mass and isoelectric point of plant proteomes. BMC Genome. 20631 (2019).
Mohanta, TK et al. Virtual 2-D map of the fungal proteome. Sci. Rep. 116676 (2021).
Uversky, VN In Posttranslational modification (eds Maloy, S. & Hughes, KBT) 425–430 (Academic Press, 2013). https://doi.org/10.1016/B978-0-12-374984-0.01203-1.
Sun, Q. et al. PPDB, the plant proteomics database at cornell. Nucleic Acids Res. 37D969–D974 (2009).
Mohanta, T., Syed, A., Ameen, F. & Bae, H. Novel genomic and evolutionary perspective of cyanobacterial tRNAs. Front. Genet. 8200 (2017).
Ochsenreiter, T., Cipriano, M. & Hajduk, SL Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS ONE 3e1566 (2008).
Reid, DW & Nicchitta, CV Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 16221–231 (2015).
Livingstone, M., Atas, E., Meller, A. & Sonenberg, N. Mechanisms governing the control of mRNA translation. Phys. Biol. 721001 (2010).
Li, X. et al. Quantitative chemical proteomics approach to identify post-translational modification-mediated protein–protein interactions. J. Am. Chem. Soc. 1341982–1985 (2012).
Eisenhaber, BE Posttranslational modifications and subcellular localization signals: Indicators of sequence without inherent 3D structure?. Curr. Protein Peptide Sci. 8197–203 (2007).
Finkemeier, I., Laxa, M., Miguet, L., Howden, AJM & Sweetlove, LJ Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol. 1551779–1790 (2011).
Wolf, S., Lucas, WJ, Deom, CM & Beachy, RN Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246377–379 (1989).
Ivankov, DN et al. Contact order revisited: Influence of protein size on the folding rate. Protein Sci. 122057–2062 (2003).
Hishigaki, H., Nakai, K., Ono, T., Tanigami, A. & Takagi, T. Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18523–531 (2001).
Kudlow, JE Post-translational modification by O-GlcNAc: Another way to change protein function. J. Cell. Biochem. 981062–1075 (2006).
Belizaire, R. & Unanue, ER targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. Proc. Natl. Acad. Sci. 10617463–17468 (2009).
Park, D., Choi, SS & Ha, K.-S. Transglutaminase 2: A multi-functional protein in multiple subcellular compartments. Amino Acids 39619–631 (2010).
Ugo, P., Marafini, P. & Meneghello, M. Symbol List 21–22 (De Gruyter, 2021). https://doi.org/10.1515/9783110589160-206.
Erickson, HP Kinetics of protein–protein association and dissociation. Principles of Protein-Protein Association 5–8 (2019) doi: https://doi.org/10.1088/2053-2563/ab19bach8.
Wu, YC, Koch, WF, Berezansky, PA & Holland, LA The dissociation constant of amino acids by the conductimetric method: I. pK1 of MOPSO-HCl at 25 °C. J. Solution Chem. 21597–605 (1992).
Das, RK, Crick, SL & Pappu, RV N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins. J. Mol. Biol. 416287–299 (2012).
Vamvaca, K., Volles, MJ & Lansbury, PT The first N-terminal amino acids of α-synuclein are essential for α-helical structure formation in vitro and membrane binding in yeast. J. Mol. Biol. 389413–424 (2009).
Requião, RD et al. Protein charge distribution in proteomes and its impact on translation. PLOS Comput. Biol. 13e1005549 (2017).
von Heijne, G. Net NC charge imbalance may be important for signal sequence function in bacteria. J. Mol. Biol. 192287–290 (1986).
von Heijne, G. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J. 32315–2318 (1984).
Dinçbas-Renqvist, V. et al. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 196900–6907 (2000).
Phelps, DS, Floros, J. & Taeusch, HW Jr. Post-translational modification of the major human surfactant-associated proteins. Biochem. J. 237373–377 (1986).
Aitken, A. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Semin. Cell Dev. Biol. 22673–680 (2011).
Nussinov, R., Tsai, C.-J., Xin, F. & Radivojac, P. Allosteric post-translational modification codes. Trends Biochem. Sci. 37447–455 (2012).
Zhang, L. et al. Towards posttranslational modification proteome of royal jelly. J. Proteom. 755327–5341 (2012).
Li, F.-ML Predicting protein subcellular location using chous pseudo amino acid composition and improved hybrid approach. Protein Peptide Lett. 15th612–616 (2008).
Park, K.-J. & Kanehisa, M. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 191656–1663 (2003).
Pierleoni, A., Martelli, PL, Fariselli, P. & Casadio, R. eSLDB: Eukaryotic subcellular localization database. Nucleic Acids Res. 35D208–D212 (2007).
Rastogi, S. & Rost, B. LocDB: experimental annotations of localization for Homo sapiens and Arabidopsis thaliana. Nucleic Acids Res. 39D230–D234 (2011).
Negi, S., Pandey, S., Srinivasan, SM, Mohammed, A. & Guda, C. LocSigDB: a database of protein localization signals. Database 20152 (2015).
Guo, X., Liu, F., Ju, Y., Wang, Z. & Wang, C. Human protein subcellular localization with integrated source and multi-label ensemble classifier. Sci. Rep. 628087 (2016).
Orre, LM et al. SubCellBarCode: Proteome-wide mapping of protein localization and relocalization. Mol. Cell 73166-182.e7 (2019).
Wan, S., Mak, M.-W. & Kung, S.-Y. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines. BMC Bioinform. 13290 (2012).
Bunkute, E. et al. PIP-DB: The protein isoelectric point database. Bioinformatics 31295–296 (2015).
Kozlowski, LP Proteome-pI: Proteome isoelectric point database. Nucleic Acids Res. 45D1112–D1116 (2017).
Kozlowski, LP IPC—isoelectric point calculator. Biol. Direct 1155 (2016).
Kozlowski, LP Proteome-pI 2.0: proteome isoelectric point database update. Nucleic Acids Res. 50D1535–D1540 (2022).
Su, B., Qian, Z., Li, T., Zhou, Y. & Wong, A. PlantMP: A database for moonlighting plant proteins. Database 20192 (2019).
Brown, JWS, Shaw, PJ, Shaw, P. & Marshall, DF Arabidopsis nucleolar protein database (AtNoPDB). Nucleic Acids Res. 33D633–D636 (2005).
Na Ayutthaya, PP, Lundberg, D., Weigel, D. & Li, L. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for the analysis of protein oligomers in plants. Curr. Protoc. Plant Biol. 5e20107 (2020).
Lee, PY, Saraygord-Afshari, N. & Low, TY The evolution of two-dimensional gel electrophoresis—from proteomics to emerging alternative applications. J. Chromatogr. A 1615460763 (2020).
Toledo Silva, SH, Bader-Mittermaier, S., Silva, LB, Doer, G. & Eisner, P. Electrophoretic characterization, amino acid composition and solubility properties of Macauba (Acrocomia aculeata L.) kernel globulins. Food Biosci. 40100908 (2021).